Package: BVAR 1.0.5
BVAR: Hierarchical Bayesian Vector Autoregression
Estimation of hierarchical Bayesian vector autoregressive models following Kuschnig & Vashold (2021) <doi:10.18637/jss.v100.i14>. Implements hierarchical prior selection for conjugate priors in the fashion of Giannone, Lenza & Primiceri (2015) <doi:10.1162/REST_a_00483>. Functions to compute and identify impulse responses, calculate forecasts, forecast error variance decompositions and scenarios are available. Several methods to print, plot and summarise results facilitate analysis.
Authors:
BVAR_1.0.5.tar.gz
BVAR_1.0.5.zip(r-4.5)BVAR_1.0.5.zip(r-4.4)BVAR_1.0.5.zip(r-4.3)
BVAR_1.0.5.tgz(r-4.4-any)BVAR_1.0.5.tgz(r-4.3-any)
BVAR_1.0.5.tar.gz(r-4.5-noble)BVAR_1.0.5.tar.gz(r-4.4-noble)
BVAR_1.0.5.tgz(r-4.4-emscripten)BVAR_1.0.5.tgz(r-4.3-emscripten)
BVAR.pdf |BVAR.html✨
BVAR/json (API)
NEWS
# Install 'BVAR' in R: |
install.packages('BVAR', repos = c('https://nk027.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/nk027/bvar/issues
bayesianbvarforecastsimpulse-responsesvector-autoregressions
Last updated 10 days agofrom:2324bdca1a. Checks:OK: 1 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 12 2024 |
R-4.5-win | NOTE | Nov 12 2024 |
R-4.5-linux | NOTE | Nov 12 2024 |
R-4.4-win | NOTE | Nov 12 2024 |
R-4.4-mac | NOTE | Nov 12 2024 |
R-4.3-win | NOTE | Nov 12 2024 |
R-4.3-mac | NOTE | Nov 12 2024 |
Exports:bv_alphabv_dummybv_fcastbv_irfbv_lambdabv_metropolisbv_mhbv_minnesotabv_mnbv_priorsbv_psibv_socbv_surbvarcompanionfevdfevd<-fred_codefred_transformhist_decompindependent_indexirfirf<-lpspar_bvarpredict<-rmseWAIC
Dependencies:mvtnorm