
Package: sanic (via r-universe)
September 11, 2024

Type Package

Title Solving Ax = b Nimbly in C++

Version 0.0.2

Date 2023-08-22

Author Nikolas Kuschnig [aut, cre]
(<https://orcid.org/0000-0002-6642-2543>), Lukas Vashold [ctb]
(<https://orcid.org/0000-0002-3562-3414>), Yixuan Qiu [ctb]

Maintainer Nikolas Kuschnig <nikolas.kuschnig@wu.ac.at>

Description Routines for solving large systems of linear equations and
eigenproblems in R. Direct and iterative solvers from the Eigen
C++ library are made available. Solvers include Cholesky, LU,
QR, and Krylov subspace methods (Conjugate Gradient, BiCGSTAB).
Dense and sparse problems are supported.

URL https://github.com/nk027/sanic

BugReports https://github.com/nk027/sanic/issues

Depends R (>= 3.3.0)

Imports Rcpp (>= 1.0.5), Matrix, methods

License GPL-3 | file LICENSE

Encoding UTF-8

LinkingTo Rcpp, RcppEigen

RoxygenNote 7.2.3

Repository https://nk027.r-universe.dev

RemoteUrl https://github.com/nk027/sanic

RemoteRef HEAD

RemoteSha 045c8d6e576485dd3628779c2a023bf05ea78a3d

1

https://orcid.org/0000-0002-6642-2543
https://orcid.org/0000-0002-3562-3414
https://github.com/nk027/sanic
https://github.com/nk027/sanic/issues

2 arnoldi

Contents
arnoldi . 2
eigen2 . 3
sanic . 4
solve2 . 4
solve_cg . 5
solve_chol . 7
sparsify . 9
svd2 . 9

Index 11

arnoldi Krylov Subspace Spectral Decomposition

Description

Arnoldi iteration and Lanczos method to iteratively approximate the Hessenberg or tridiagonal form
of a matrix A and find its eigenvalues.

Usage

arnoldi(
a,
b,
symmetric,
iter = nrow(a),
tol = .Machine$double.eps,
eigen = TRUE,
orthogonalise = TRUE

)

lanczos(
a,
b,
iter = nrow(a),
tol = .Machine$double.eps,
eigen = TRUE,
orthogonalise = TRUE

)

Arguments

a Square numeric matrix.

b Arbitrary numeric non-zero vector used to construct the basis.

eigen2 3

symmetric Logical scalar indicating whether ’a’ is symmetric. By default symmetry is
checked up to machine precision, which may take a long time for symmetric
matrices.

iter Integer scalar with the maximum number of iterations. Defaults to the theoreti-
cal maximum, i.e. the number of columns in ’a’.

tol Numeric scalar with the desired tolerance. Defaults to the machine precision.
eigen Logical scalar indicating whether to compute eigenvalues from the decomposi-

tion.
orthogonalise Logical scalar indicating whether to use plain Lanczos or full reorthogonalisa-

tion. Defaults to reorthogonalisation.

Value

Returns a list with slots "H" for the Hessenberg form of ’a’ or slots "diagonal" and "subdiagonal"
for its triangular form, slot "Q" with the orthonormal basis, and, if requested, eigenvalues in the slot
"values".

Examples

set.seed(42)
Compute Hessenberg of a square matrix
A <- matrix(rnorm(9), nrow = 3, ncol = 3)
ks <- arnoldi(A, symmetric = FALSE)

Compute tridiagonal of a symmetric matrix
A <- crossprod(matrix(rnorm(9), nrow = 3, ncol = 3))
ks <- lanczos(A)
ks <- arnoldi(A, symmetric = TRUE) # Short-hand

eigen2 Spectral Decomposition

Description

Solvers for eigenproblems around the matrix A. Compute eigenvalues λ and eigenvectors v of A,
such that Av = λv.

Usage

eigen2(a, symmetric, vectors = TRUE)

Arguments

a Square numeric matrix.
symmetric Logical scalar indicating whether ’a’ is symmetric. By default symmetry is

checked up to machine precision, which may take a long time for symmetric
matrices.

vectors Logical scalar indicating whether eigenvectors should be computed and returned.

4 solve2

Value

Solves the eigenproblem and returns a list with eigenvalues in the "values" slot and, if requested,
eigenvectors in the slot "vectors".

Examples

set.seed(42)
Compute eigenvalues and eigenvectors for a square matrix
A <- matrix(rnorm(9), nrow = 3, ncol = 3)
ev <- eigen2(A, symmetric = FALSE)

Compute eigenvalues and eigenvectors for a symmetric matrix
A <- crossprod(matrix(rnorm(9), nrow = 3, ncol = 3))
ev <- eigen2(A, symmetric = TRUE)
Check reconstruction
norm(A %*% ev$vectors - ev$vectors %*% diag(ev$values))

sanic Solving Ax = b Nimbly in C++

Description

Routines for solving large systems of linear equations in R. Direct and iterative solvers from the
Eigen C++ library are made available. Solvers include Cholesky, LU, QR, and Krylov subspace
methods (Conjugate Gradient, BiCGSTAB). Both dense and sparse problems are supported.

solve2 Solve Systems of Equations

Description

Solve systems of equations Ax = b using an automatically chosen direct method (see solve_chol).
Methods are chosen for speed at reasonable accuracy. Please choose a suitable method manually if
numerical stability is the main consideration.

Usage

solve2(a, b, ...)

Arguments

a Square numeric matrix with the coefficients of the linear system. Both dense
and sparse matrices are supported (see sparsify).

b Numeric vector or matrix at the right-hand side of the linear system. If missing,
’b’ is set to an identity matrix and ’a’ is inverted.

... Dispatched to methods in the solvers.

solve_cg 5

Value

Solves for x and returns a numeric matrix with the results.

Examples

set.seed(42)
x <- rnorm(3)

Solve using a general matrix
A <- matrix(rnorm(9), nrow = 3, ncol = 3)
b <- A %*% x
norm(solve2(A, b) - x)

Solve using a symmetric matrix
A <- crossprod(matrix(rnorm(9), nrow = 3, ncol = 3))
b <- A %*% x
norm(solve2(A, b) - x)

Solve using a square matrix
A <- matrix(rnorm(12), nrow = 4, ncol = 3)
b <- A %*% x
norm(solve2(A, b) - x)

solve_cg Solve Systems of Equations Using Iterative Methods

Description

Iterative solvers using the Conjugate Gradient method for sparse systems of equations Ax = b.
Three different types are available: (1) stabilized bi-conjugate gradient (BiCGSTAB) for square
matrices, (2) conjugate gradient for rectangular least-squares (LSCG), and (3) classic conjugate
gradient (CG) for symmetric positive definite matrices.

Usage

solve_cg(
a,
b,
x0,
type = c("BiCGSTAB", "LSCG", "CG"),
iter,
tol,
precond = 1L,
verbose = FALSE

)

6 solve_cg

Arguments

a Square numeric matrix with the coefficients of the linear system. Dense and
sparse matrices are supported, but the format must be sparse (see sparsify).
Dense matrices are coerced automatically.

b Numeric vector or matrix at the right-hand side of the linear system. If missing,
’b’ is set to an identity matrix and ’a’ is inverted.

x0 Numeric vector or matrix with an initial guess. Must be of the same dimension
as ’b’.

type Character scalar. Whether to use the BiCGSTAB, least squares CG or classic
CG method.

iter Integer scalar with the maximum number of iterations. Defaults to the theoreti-
cal maximum, i.e. the number of columns in ’a’.

tol Numeric scalar with the desired tolerance. Defaults to the machine precision.

precond Integer scalar indicating the type of preconditioner to be used. Defaults to diag-
onal preconditioning. See the Details for further information.

verbose Logical scalar. Whether to print iterations and tolerance.

Details

Preconditioners can be set to 0 for no / identity preconditioning, 1 (default) for Jacobi / diagonal
preconditioning, or 2 for incomplete factorisation. Not all schemes are available for every type:

* type = "BiCGSTAB" The default is precond = 1 for diagonal preconditioning. Set precond = 0
for no preconditioning, or precond = 2 for an incomplete LUT preconditioner. * type = "LSCG"
The default is precond = 1 for diagonal least squares preconditioning. Set precond = 0 for no pre-
conditioning. * type = "CG" The default is precond = 1 for diagonal preconditioning. Set precond
= 0 for no preconditioning, or precond = 2 for an incomplete Cholesky preconditioner.

Value

Solves for x and returns a numeric matrix with the results.

Examples

set.seed(42)
x <- rnorm(3)

Solve via BiCGSTAB for square matrices
A <- matrix(rnorm(9), nrow = 3, ncol = 3)
b <- A %*% x
norm(solve_cg(A, b, type = "B") - x)

Solve via LSCG for rectangular matrices
A <- matrix(rnorm(12), nrow = 4, ncol = 3)
b <- A %*% x
norm(solve_cg(A, b, type = "LS") - x)

Solve via classic CG for symmetric matrices

solve_chol 7

A <- crossprod(matrix(rnorm(9), nrow = 3, ncol = 3))
b <- A %*% x
norm(solve_cg(A, b, type = "CG") - x)

The input matrix A should always be in sparse format
A <- sparsify(crossprod(matrix(rnorm(9), nrow = 3, ncol = 3)))
The right-hand side should be a dense matrix
b <- as.matrix(A %*% x)

We can check the speed of convergence and quality directly
solve_cg(A, b, verbose = TRUE)
And provide guesses as starting value
solve_cg(A, b, x0 = x, verbose = TRUE)

solve_chol Solve Systems of Equations Using Direct Methods

Description

Direct solvers using Cholesky, LU, or QR decompositions for systems of equations Ax = b. Dense
or sparse methods are used depending on the format of the input matrix (see sparsify).

Usage

solve_chol(a, b, pivot = 1L, ordering = 0L)

solve_lu(a, b, pivot = 1L, ordering = 1L)

solve_qr(a, b, pivot = 1L, ordering = 1L)

Arguments

a Square numeric matrix with the coefficients of the linear system. Both dense
and sparse matrices are supported (see sparsify).

b Numeric vector or matrix at the right-hand side of the linear system. If missing,
’b’ is set to an identity matrix and ’a’ is inverted.

pivot Integer scalar indicating the pivoting scheme to be used. Defaults to partial
pivoting. See the Details for further information.

ordering Integer scalar indicating the ordering scheme to be used. See the Details for
further information.

Details

Pivoting schemes for dense matrices can be set to 0 for no pivoting, 1 (default) for partial pivoting,
or 2 for full pivoting. Not all schemes are available for every decomposition:

* solve_chol() The default is pivot = 1 for the robust LDLT decomposition of A, such that
A = P ′LDL∗P . For the LDLT A needs to be positive or negative semidefinite. Set pivot = 0

8 solve_chol

for the plain LLT decomposition of A, such that A = LL∗ = U∗U . For the LLT A needs to be
positive definite and preferably numerically stable. * solve_lu() The default is pivot = 1 for the
partial pivoting LU decomposition of A, such that A = PLU . For this scheme A needs to be invert-
ible and preferably numerically stable. Set pivot = 2 for the complete pivoting LU decomposition
of A, such that A = P−1LUQ−1. This scheme is applicable to square matrices, rank-revealing,
and stable. solve_qr() The default is pivot = 1 for the column pivoting Householder QR decom-
position of A, such that AP = QR. This scheme is generally applicable, rank-revealing, and stable.
Set pivot = 2 for the full pivoting Householder QR decomposition of A, such that PAP ′ = QR.
This scheme is generally applicable, rank-revealing, and optimally stable. Set pivot = 0 for an
unpivoted Householder QR decomposition of A, such that A = QR. This scheme is generally
applicable, but not as stable as pivoted variants.

Ordering schemes for sparse matrices can be set to 0 for approximate minimum degree (AMD) or-
dering, 1 for column approximate minimum degree (COLAMD) ordering, or 2 for natural ordering.
Not all orderings are available for every decomposition:

* solve_chol() The default is ordering = 0 for AMD ordering. Set ordering = 2 for natural
ordering. * solve_lu() The default is ordering = 1 for COLAMD ordering. Set ordering = 0
for AMD or ordering = 2 for natural ordering. * solve_qr() The default is ordering = 1 for
COLAMD ordering. Set ordering = 0 for AMD or ordering = 2 for natural ordering.

Value

Solves for x and returns a numeric matrix with the results.

Examples

set.seed(42)
x <- rnorm(3)

Solve via QR for general matrices
A <- matrix(rnorm(12), nrow = 4, ncol = 3)
b <- A %*% x
norm(solve_qr(A, b) - x)

Solve via LU for square matrices
A <- matrix(rnorm(9), nrow = 3, ncol = 3)
b <- A %*% x
norm(solve_lu(A, b) - x)

Solve via Cholesky for symmetric matrices
A <- crossprod(matrix(rnorm(9), nrow = 3, ncol = 3))
b <- A %*% x
norm(solve_chol(A, b) - x)

Sparse methods are available for the 'dgCMatrix' class from Matrix
A <- crossprod(matrix(rnorm(9), nrow = 3, ncol = 3))
b <- A %*% x
norm(solve_qr(sparsify(A), b))
norm(solve_lu(sparsify(A), b))
norm(solve_chol(sparsify(A), b))

sparsify 9

sparsify Transform a Matrix to Be Sparse.

Description

Concise function to transform dense to sparse matrices of class dgCMatrix (see sparseMatrix).

Usage

sparsify(x)

Arguments

x Numeric matrix to transform to a sparse ’dgCMatrix’.

Value

Returns ’x’ as dgCMatrix.

Examples

sparsify(matrix(rnorm(9L), 3L))

svd2 Singular Value Decomposition

Description

Solvers for generalized eigenproblems around the matrix A. Compute singular values Σ, left sin-
gular vectors U and right singular vectors V of A, such that A = UΣV ∗. Two different types are
available: (1) bidiagonal divide and conquer strategy (BDC) SVD, and (2) two-sided Jacobi SVD
for small matrices (<16) and high accuracy.

Usage

svd2(a, type = c("BDC", "Jacobi"), vectors = TRUE, thin = TRUE)

Arguments

a Numeric matrix.

type Character scalar. Whether to use BDC or Jacobi SVD.

vectors Logical scalar indicating whether singular vectors should be computed and re-
turned.

thin Logical scalar indicating whether singular vectors should be returned in thinned
or full format.

10 svd2

Value

Solves the generalised eigenproblem and returns a list with singular values in the "d" component
and, if requested, singular vectors in the components "u" and "v".

Examples

set.seed(42)
Compute singular values and vectors using BDC
A <- matrix(rnorm(9), nrow = 3, ncol = 3)
sv <- svd2(A)

Compute singular values using Jacobi
A <- matrix(rnorm(9), nrow = 3, ncol = 3)
sv <- svd2(A, type = "J", vectors = FALSE)

Compute singular values and full vectors using BDC
A <- matrix(rnorm(12), nrow = 4, ncol = 3)
sv <- svd2(A, type = "B", thin = FALSE)
A <- matrix(rnorm(12), nrow = 3, ncol = 4)
sv <- svd2(A, type = "B", thin = FALSE)

Index

arnoldi, 2

eigen2, 3

lanczos (arnoldi), 2

sanic, 4
solve2, 4
solve_cg, 5
solve_chol, 4, 7
solve_lu (solve_chol), 7
solve_qr (solve_chol), 7
sparseMatrix, 9
sparsify, 4, 6, 7, 9
svd2, 9

11

	arnoldi
	eigen2
	sanic
	solve2
	solve_cg
	solve_chol
	sparsify
	svd2
	Index

